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Summary

Power input by time-harmonic forces and power dissipated
in a component subsystem are found from the displacements and
reaction forces which are obtained numerically by a computer
program for dynamic stiffness coupling. Power flow in a system
consisting of a finite beam mounted on an infinite water loaded
plate is given as a numerical example in order to demonstrate
the usefulness of the program as a research tool for power flow
calculations.
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1. INTRODUCTION

Among those methods developed for analysing power flow in
complex dynamical systems the method of statistical energy
analysis (SEA) has received most attention. It is a tool for
calculating, in a statistical sense, the average response of a
complex system in terms of a minimum number of parameters such as
the hysteretic loss factors, coupling loss factors and modal
densities of its component subsystems. These parameters can
rarely be obtained theoretically, and it is found that a large
number of measurements are usually required for their accurate
determination, thus, apparently, destroying the simplicity of the
method. It is thought that SEA, which must be regarded as an
empirical science, is best suited to studying changes in existing
systems rather than for the making of predictions at the design
stage. The SEA method is discussed in detail in Lyon's text E13.
Atkins E23 at ARE(Teddington) has written a general purpose
Fortran computer program for SEA analysis.

The physics of 'exact' power flow in simple dynamical 4

systems has been investigated analytically by Goyder & White E33
in a series of informative papers. Their first paper gives, in
tabular form, closed-form expressions for the mechanical power
transmitted to an infinite beam and infinite plate by prescribed
time-harmonic forces or displacements; their second paper
investigates the power input to an infinite plate by an attached
beam which is excited by forces; and their third paper
investigates power flow in simple isolation systems in which the
machine is modelled as a mass which is connected by a spring to
an idealized foundation. This important work on power flow has
been extended by Pinnington & White (43 and Pinnington E5) to the
realm of experiment, and the modelling of the machine and its
foundation as resonant Bernoulli beams in flexure. This work
has demonstrated that the frequency averaged power input to a
finite system is, at a sufficiently high frequency, well
approximated by the power input to the related infinite system.
This could have important implications when analysing practical

- -~ isolation systems whose lack of known structural detail renders
exact analysis all but meaningless at high frequencies.

While the SEA method in itself is not well suited to design
studies or predictions at low frequencies, the exact methods of
computing power flow are deficient due to the absence of suitable
computational methods for analysing complex dynamical systems.
Thus, the principal motivation for the work contained herein lies
in the requirement for reliable methods for calculating power

*f low over a wide range of frequencies, especially in isolation
systems which are mounted on fluid loaded foundations. These
dynamical systems are usually designed to minimize force or
velocity at the isolation points, whereas it may be more
profitable to design systems for minimum power flow, either in the
foundation or its surrounding fluid in which it may take the form
of acoustic radiation.

le2. POWER FLOW IN SUBSYSTEM i.
Figure 1 shows an isolated subsystem which is a member uf a

complex point connected dynamical system. At each of the N



connection points to other dynamical systems and/or external
forces, there are, in general, 6 degrees of freedom

MXc = [Ux6Uy,Uz,ex ey~ez (2.1)

comprising 3 displacements and 3 rotations, and 6 reaction or .;)
external forces,'i%

IF) = F•,F yF z•M•M y z (2.2)

comprising 3 point forces and 3 point moments. From here on in
this report, the word 'forces' may imply forces and/or moments,
and the word 'displacements' may imply displacements and/ori , rotations.

The mechanical power dissipated by structural damping and
acoustic radiation is

N

P = Real( Z CF 3TEx* ) > 0 (2.3)

J=l

where the customary multiplication factor of one-half has been
omitted because force amplitudes are usually specified in terms

of their rms values. [X3 is a column vector of the complex

conjugate of the velocities, viz.

CX 3 = +iw(XA3, for time variation exp(-iwt)

or (2.4)
XA = -iwX A3, for time variation exp(+iwt)

The individual terms in Equation (2.3), viz.

P = Real(CF T EX 3) (2.5)

may have separate physical meaning because the power balance
equation for each subsystem requires that the power dissipated is
equal to the power transmitted into the subsystem minus the power
transmitted from the subsystem, and this quantity is always
positive. The power flow at point j may be quite complex, for
example:

(a) If point j is not connected to other subsystems, but is a
point where external forces are applied, then positive P means

that power is transmitted to the subsystem by the external
forces while negative P means that power is absorbed by the
external forces. Thus it is important to realize that external
forces can absorb power from, as well as transmit power to,
a subsystem. In the former case it is necessary that the
subsystem and/or other connected subsystems are subjected to U
other external forces. The sum of the separate powers input
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by external forces in the various subsystems must be positive.

(b) If point j is connected to other subsystems, and there
are no external forces applied at this point, then (F 1 are

reaction forces whose vector sum over all subsystems that
connect at point jmust be zero. For the single subsystem
under consideration, Pis positive if power is transmitted to ~ .

it at the connection point j, and P. is negative if power

is transmitted from it at this point. If the other subsystems
attached to point j are isolated from forces, which means
that they are not connected either directly or indirectly to
other subsystems with external forces, then P will be negative. .

LIf one or more of the attached subsystems at point j are not
isolated from external forces, then P.i may either be positive

or negative, as power may either be transmitted to or from the
subsystem at point j. If the subsystem is isolated from external
forces at all connection points except point J, then P must be

positive as power will be transmitted to the subsystem at the
connection point J.

(c) If point j is connected to other subsystems and there
are external forces applied at this point, then (F 3 are the

reaction forces whose vector sum over all subsystems that
connect at point j must be equal to the external forces. ,I
Hence, the total power transmitted at point j to all
connecting subsystems may either be positive or negative as
in (a) above. Additionally, the power P. transmitted to the

I. subsystem under consideration may either~ be positive or
negative. For the particular case in which the subsystem is
isolated from external forces, except at connection point J,
then P must be positive as power will be transmitted to the
subsystem. It may help, conceptually, to create a null
connection point at a vanishingly small distance from the
point J: the external forces are then applied to this point
and the statements in (a) and (b) above are then applicable.

The computation of power flow in a complex dynamical system L~kp is thus reducible to the computation of the displacements and
reaction forces at the connection points. The total power
dissipated in a selected subsystem is given by equation (2.3) A9
whose individual terms, equation (2.5), have physical meaning as
the power transmitted to or transmitted from a connecting
subsystem. In fact, the individual terms can be thought of as
the sum of powers transmitted by individual reaction forces.

3. ACOUSTIC POWEMM

When the surface of the subsystem shown in Figure 1
contacts an acoustic fluid the mechanical power dissipated,
as defined by equation (2.3), is %

p p + p (3.1)
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where Pd is the power dissipated by structural damping, and

Pr is the power dissipated in the form of acoustic radiation,
which is of central importance in noise control problems. For
a closed surface S surrounded by an acoustic fluid

Pr = Real 1S p(S)cXn(S)dS (3.2)

where p(S) and 6 (S) are, respectively, the surface pressure

and normal velocity. Alternatively, if the far-field pressure is
known, usually from an asymptotic expansion, as

p(R,e,0) = A(e,O)exp(ikR)/R (3.3)

then
2w w

P = f EIA(e,o)12 /pc~sin(e)dedo (3.4)r

0=0 e=0

which double integral is evaluated numerically by a quadrature
formula such as Simpson's rule. (R,e,O) are spherical polar
coordinates, pc is the characteristic impedance of the fluid,
and A(e,o) is the angular distribution of the sound field.

For researchers working in the field of fluid structure
interaction the text written by Junger & Feit C6] is the standard
source of information if closed-form expressions for p(R,e,o)
are required for the special cases of infinite plate, infinite
cylindrical shell and finite spherical shell. Few useful
approximations are available for the far-field sound radiation
of finite bodies excited by prescribed forces, despite the
considerable research effort that has been expended in this area.
However, for general studies the aforementioned geometries can be
made to provide suitable approximations.

4. COMPUTATION OF FORCES AND DISPLACEMENTS

Program COUPLE is a well-established and versatile Fortran
program for computing the time-harmonic forced response of point
connected dynamical systems by the method of dynamic stiffness
coupling. It was designed and written at Imperial College,
London, by Sainsbury [73, and it has been periodically updated
and extended at ARE(Teddington) 183 where it runs on a PDP-l1.
The program assembles the dynamic stiffness matrices of basic
subsystems to form a system dynamic stiffness matrix whose
inverse enables the displacements at the connection points to be
found, when the excitation forces are prescribed. The frequency
dependent dynamic stiffness matrix, ED(w)J, of a subsystem
relates displacements and forces on that subsystem by the matrix
relation

ED(w)J[Xl = CF) (4.1)

where, for the subsystem of Figure 1 which has 6 degrees of
freedom at each connection point, (X) and CF) are, respectively,
displacement and force vectors of length 6N. However, COUPLE
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requires specification of only those degrees of freedom that
participate in the forced response. Degrees of freedom omitted
from the analysis can be regarded as 'free' connections. This is
sensible because the special cases of one- and two-dimensional
motions, for example, would otherwise be overdetermined. For the

2finite element method ED(w)J=ESJ-w EMJ, and if it is obtained
by experiment then it is the inverse of the receptance matrix.

In the context of COUPLE a basic dynamical system is simply
a subsystem whose dynamic stiffness matrix is known either
analytically, numerically or experimentally. The following basic
dynamical systems are known to the program:

(a) Frequency independent mass, stiffness and damping matrices
of simple dynamical systems.

(b) Three-dimensional mass and spring elements with nodes that
may be offset from the connection points.

(c) Euler-Bernoulli and Timoshenko space frame elements with
offset nodes: special cases of inplane and out of plane motion
with options for axial extension and torsion. These elements
are exact, i.e. the elements of their dynamic stiffness
matrices are known transcendental functions.

(d) Infinite beam and infinite fluid loaded plate.

(e) Eigenvalues and suitably normalized eigenvectors obtained
from finite element computer programs.

(f) Receptance or stiffness type data stored on a disk file
by auxiliary programs or by COUPLE itself during a previous
job. Thus, experimental data, user generated subsystems and
substructuring may all be used.

Program output is to a printer and disk file for subsequent
processing and plotting. The output, at each frequency of a
linear or logarithmic frequency sweep, and for each set of
prescribed force conditions, consists of selected values of the ,- -.

following:

(a) Displacements at the connection points, and transmiss-
ibilities which are defined as the ratio of responses at
selected degrees of freedom. The displacements enable
computation of the input powers, and allow substructuring
via receptance matrices.

(b) Forces transmitted to ground, viz. reaction forces at
selected degrees of freedom whose motions are constrained
to zero. Reaction forces at selected degrees of freedom of 12'
a subsystem. The reaction forces permit calculation of the
power that is dissipated in the subsystem.

For the PDP implementation there is allowed a maximum of 60
degrees of freedom together with a maximum of 60 individual
subsystems. This is not unduly restrictive because (a) some of
the subsystems are exact, thus rendering unnecessary subdivision .

as the frequency is increased; (b) substructuring is possible;
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(c) only those degrees of freedom at subsystem connection points
are required; and (d) the structural dynamics modelling process
should be regarded as phenomenological rather than one-to-one
because there is seldom close agreement between theory and
experiment at frequencies above the resonant frequencies of the
first few modes.

5. COMPUTATION OF POWER

Fortran programs have been written to process the disk file Ir

produced by COUPLE in order to:

(a) Calculate the mechanical power input by selected prescribed
excitation forces, and the power transmitted to a specified
subsystem by selected reaction forces.

(b) Calculate the acoustic power radiated by an infinite point
or line excited plate, together with the maximum pressure and
the pressure normal to the plate surface. Additional acoustic
subsystems are to be added on an opportunity basis.

Output is to a printer and to a disk file for subsequent process-
ing and plotting. The program specifications are documented
elsewhere E83.

6. NUMERICAL EXAMPLE

Figure 2 shows an 'Euler-Bernoulli' steel beam of mass
100kg which is attached by 3 springs to an infinite water loaded
steel plate, of thickness 0.01m. The steel plate has 9 point
masses, each of 10kg, attached to it. The springs do not exert
moments either on the beam or on the plate. The beam is excited
by a vertical time-harmonic point force, of magnitude lkN rms,
which is applied at the centre of the beam. The system is
modelled by 15 COUPLE subsystems comprising 2 beams, 3 springs,
9 point masses and a water loaded plate. There are, for this
particular model, 15 degrees of freedom comprising 12 vertical
displacements (numbered 1-12) and 3 rotations (numbered 13-15).
The material and geometric constants, in SI units, chosen for
this simplified machinery isolation system are:

101

Beam: E=19.5x1 0  p=7700.0 -=0.01

L=1.0 A=0.013 I=l.41xl05

Spring: S=0.333xi08  -=0.01 L
Point masses: m=16.0, with separation=0.5

Plate: E=19.5x1010  o=0.29 p=7700.0 X-\'
h=0.01 rI=0.02

Hater: p=lO00.O c=1500.0

E is Young's modulus, p is density, 71 is the hysteretic
loss-factor, L is the length of the beam whose cross-sectional
area is A and whose moment of area in bending is I, S is the
stiffness of each spring, m is the mass of each of the point
masses, a is Poisson's ratio of the plate whose thickness is h,
c is the sound velocity in water.
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If the isolation system were mounted on a rigid foundation
rather than the elastic plate, then the response spectra, in the
frequency range to lkHz, would be dominated by two sharp peaks;
the first at 150Hz being due to the mass of the beam acting on
the stiffness of the springs, and the second at 650Hz being due
to the fundamental bending resonance of the beam. For the case
in which the beam is mounted on the elastic plate, the power
input by the driving force, the power transmitted to the plate
and the radiated acoustic power are shown in Figure 3. Also given
for comparison purposes are the corresponding values for a
uniform plate which is excited directly by a lkN rms force: these
curves are smooth because the impedance of a fluid loaded plate
is resistive with a very small stiffness component, which means " .

that a resonant response is not possible.

The mechanical input power of the machinery isolation
system is dominated by a peak at approximately 665Hz, which is
due to the first bending resonance of the beam behaving as an
almost free body. At frequencies below 500Hz the humps that
appear in the spectrum are mainly due to interactions between the
point masses, but the beam mass and spring stiffness contribute
to the first maximum at 100Hz. These interactions are not too
important above 500Hz because the beam is partially isolated from .
the plate, which means that the input power is controlled by the
beam's properties. The power transmitted to the plate is not
much different from the input power at frequencies up to 500Hz,
but thereafter the power transmitted is increasingly less than
the power input.

The power dissipated as acoustic radiation is less than 1%
(20 dB down) of the power transmitted to the plate. Thus, at
least 99% of the power transmitted is dissipated by structural
hysteresis damping as a slightly damped 'free wave' propagates
parallel to the plate surface. The power carried by this wave
may partially be converted to acoustic radiation power if remote
impedance discontinuities are present on the plate's surface.
With the exceptic., of the maximum at 100Hz, the humps in the
spectrum are characteristic of those obtained by interactions
among symmetrically placed masses whose forces of constraint may .'

either enhance or reduce the radiated power, depending on their
phase relations.

7. CONCLUDING REMARKS

The power flow in a point connected dynamical system is
computed from displacements and reaction forces that are stored .J
on disk file by a well-established Fortran program for dynamic
stiffness coupling. A numerical example of power flow in an
idealized machinery isolation system, attached to a water loaded
plate, has demonstrated the potential capability of the Fortran
programs as useful numerical tools for research in the field of
fluid-structure interaction. It is believed that these programs
are the most comprehensive available for power flow calculations.
The following theoretical work is proposed as follow-up projects
in order to establish their practical value:

(a) Numerical investigation of power flow in a realistic
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model of a machinery isolation system which is mounted on
a fluid loaded foundation. The system may or may not have
several 'vibration shorts' and attached dynamic vibration ,

absorbers. Of particular importance should be the ident-
ification of dominant transmission paths to the fluid
and the effect of damping applied either continuously over
subsystems or locally at joints.

(b) Modelling of the isolation system at high frequencies
with 'infinite' elements in order to simplify the compu-
tation of power flow. Comparison of numerical results
with those obtained from the SEA method.
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